
  1

Ch. 7 The Wave Nature of 
Particles
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7.1 De Broglie Waves

Light behaves like wave in some situations and in others like 
particles. If nature is symmertic, the duality should also hold for 
matter. 
In 1924, de Broglie postulated that matter particles also behave
like waves in some situations and the following relations hold:

λ=
h
p

    and    E=h f

where  E = energy; p = momentum

Louis de Broglie
  (1892-1987)
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● The Bohr Model and de Broglie Waves

L=mv r=n
 h
2π

Consider an electron as a standing wave fitted around a circle in
one of the Bohr orbits

2π r=nλ      n=1,2,3, ...

For non-relativistic particle: λ=
h
p
=

 h
mv

=> 

This is Bohr's result that the angular momentum
of the electron is quantized.
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7.2 Electrons and Matter Waves

(Davisson and Germer 1927)

● Electron Diffraction
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Consider a beam of electrons scattered by a target crystal. The
electrons were scattered primarily by the planes of atoms at 
the surface

Wave nature of electrons => the plane acts as a reflecting 
                                              diffraction grating

Max reflection intensity occurs at 

d sinθ=mλ      (m=1, 2,3,. ..)

(ie, when the scattered waves are in phase)
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Consider an electron freely accelerated through a potential V
ab

 :

eV ab=
p2

2m

The de Broglie wavelength is: λ=
h
p
=

       h

√2meV ab
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Diffraction pattern
by an electron beam
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● Electron Double-Slit Interference
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Photographs showing the buildup of an interference pattern by a beam
of electrons: 

~7 ~100

~3000

~20000

~70000 electrons
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7.3 Wave Functions and the 
Schrödinger Equation

In atomic or subatomic scale, we use a wave function to describe
the state of a particle:

Ψ(x , y , z , t)

The wave function for a particle contains all the information that
can be known about the particle.
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● Interpretation of the Wave Function

∣Ψ(x , y , z , t)∣2dV= 
Probability of finding the particle at time t 
within a volume dV around the point (x,y,z)

In 1926, Max Born proposed the following interpretation: 

  Max Born
(1882-1970)
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Remark: 

1. We shall see that  is complex so that ∣Ψ∣2
=ΨΨ*

(complex conjugate) 

2. The particle must be somewhere in the universe. The wave 
    function must be normalized:

3. ||2 is the probability density (probability distribution function). 

∫all space
∣Ψ∣2dV=1
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● Stationary States

In general, |(x,y,z,t)|2 at a particular point varies with time. 

If the particle is in a state of definite energy, ||2 at each point is
independent of time (stationary state).

The wave function for any state can be expressed as a 
combination of stationary states.
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For a particle in a state of definite energy E (stationary state): 

Ψ(x , y , z , t)=ψ(x , y , z)e−i Et / ℏ

∣Ψ(x , y , z , t)∣2
=Ψ(x , y , z , t)Ψ*(x.y , z , t)

                      =ψ(x , y , z)e−i E t /ℏ ψ*
(x , y , z)e+i Et / ℏ

                      =∣ψ(x , y , z)∣2

Note: 

For a stationary state, the probability distribution function does
not depend on time
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● The Time-Independent Schrödinger Equation

How to determine (x,y,z) and E ?

They are determined by solving the Schrödinger equation in QM

For a particle of mass m moving in one dimension:

−
 ℏ

2

2m
d 2 ψ(x)

  dx2 +U (x)ψ(x)=E ψ(x) (one-dimensional 
 Schrödinger equation)

where U(x) = potential energy 
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Remark:

1. Schrödinger equation is a physical principle. It cannot be
    derived from other principles! 

2. We know that it is correct because its predictions agree with
    experiments!

3. There is also a time-dependent 
    Schrödinger equation. 
    However, we don't need that to 
    study stationary states. 
   

Erwin Schrödinger
     (1887-1961)



  18

● Wave Function for a Free Particle

Take U(x) = 0: −
 ℏ

2

2m
d 2 ψ(x)

  dx2 =E ψ(x)

ψ ' ' (x)=−k 2 ψ(x)=> (k 2
=2mE /ℏ

2
)

=> ψ(x)=C cos(kx)+Dsin(k x)

We can also write

ψ(x)=Aei k x (A = complex number)
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For a free particle:

E=
p2

2m
k 2=

2mE
 ℏ2 =

p2

ℏ2

From de Broglie relations:

λ=
h
p

=> 

=> k=
2π
λ

(wave number)

=> Free-particle wave function:

Ψ(x , t )=ψ(x)e−i Et /ℏ

            =Aei (k x−ω t )

E=h f ω=2π f =E
ℏ (angular frequency)=>
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A free particle has a definite momentum p in the x-direction.

Δ p=0No uncertainty in momentum

Δ x=∞

∣Ψ(x , t)∣2
=Ψ(x , t)Ψ*(x , t)

              =Aei (kx−ω t)A*e−i (k x−ω t)

              =∣A∣2= constant 

=> We are equally likely to find the particle anywhere in space!

Note: The wave function cannot be normalized 

∫
−∞

+∞

∣Ψ(x , t )∣
2
d x=∞
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● Wave Packets 

In real situations, we always have some idea where a particle is. 
We need a wave function that is localized in space (wave packet).

A wave packet can be constructed by superimposing two or more
sinusoidal waves. 

ψ(x)=A1 e
ik

1
x
+A2e

ik
2
x

        =[A1 cos(k 1 x)+A2 cos(k 2 x)]+i [A1 sin(k 1 x)+A2 sin(k 2 x)]

Example: 
Consider two waves (with slightly different frequencies) at t = 0
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Two sinusoidal waves

Superposition of these waves
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Superposition of a large number of sinusoidal waves with different
wave numbers (k) and appropriate amplitudes: 

This localized pulse has aspects of both particle and wave.

Note: The particle's momentum no longer has a definite value.
         

λav=
2π
k av

Δ p≠0
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7.4 The Uncertainty Principle

In general, it is impossible to determine the position and 
momentum of an object with arbitrary great precision at the 
same time:

Δ xΔ p x≥ℏ/2

Δ yΔ p y≥ℏ/2    ,   Δ zΔ p z≥ℏ/2Similarly

(ℏ=h /2π)

Werner Heisenberg
      (1901-1976)

Note:
The uncertainty in one coordinate is not related to 
the uncertainty in a different component of p.
   (e.g., x is not related directly to p

y
 ) 
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● Uncertainty in Energy

ΔEΔ t≥ℏ/2

There is also an uncertainty principle for energy. The uncertainty
E depends on the time interval t during which the system 
remains in the given state: 

Heisenberg uncertainty
principle for energy and
time interval
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7.5 Wave-Particle Duality

Why electrons (or photons) can be wavelike in some experiments and
particlelike in others?

 

Principle of complementarity:

The wave and the particle aspects of a quantum entity are both 
necessary for a complete description. However, the two aspects 
cannot be revealed simultaneously in a single experiment. The 
aspect that is revealed is determined by the nature of the experiment 
being done.

(Bohr 1927)
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Trajectories of matter particles
in a bubble chamber

Interference pattern of matter
wave in a double-slit experiment
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Case Study: 

Which slit does an individual electron pass through?

If we put a detector in front of each slit, so that if an electron passes through
it, it will generate a signal. We can then relate the signal to the ''screen signal''
detected by D, thus identifying the path of the electron. 

What would happen if we succeed to do this?
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Appendix: The Electron Microscope

           Light beam                                           Electron beam
_______________________________________________________
1.   bent by reflection                                   bent by E- or B-field
         or refraction

2.  brought to convergence                   brought to convergence by
     by a converging lens or                              E- or B-field 
     concave mirror             
     

Note: Resolution of an optical microscope is limited by diffraction
          effect (determined by the wavelength ~500 nm). 

=>  resolution of an electron microscope is much higher  
       (electron wavelength << wavelength of visible light)

(Optical microscope) (Electron microscope)
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● Transmission Electron Microscope (TEM )
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TEM image of the polio virus 
  (The virus is 30 nm in size)
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● Scanning Tunneling Microscope (STM)
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